IIT JAM PHYSICS 2026

Ranjan Das
0

🌟 ELECTROMAGNETISM – COMPLETE COMBINED TABLE (WITH FORMULAE & CONDITIONS)


🔹 ELECTROSTATICS

TopicDefinitionFormulaeConditions / Valid WhenLimitationsSymbols Meaning
Coulomb’s LawForce between two stationary point chargesF=14πε0q1q2r2r^\vec F=\frac{1}{4\pi\varepsilon_0}\frac{q_1q_2}{r^2}\hat rPoint charges, electrostatics, vacuum or uniform mediumMoving charges, relativistic speedsqq=charge, rr=distance, ε0\varepsilon_0=permittivity
Electric FieldForce per unit positive test chargeE=Fq\vec E=\frac{\vec F}{q}Test charge very small, static fieldLarge test chargeEE=field strength
Electric PotentialWork done per unit chargeV=WqV=\frac{W}{q}Conservative electrostatic fieldTime-varying fieldsVV=potential
Relation EEVVField as potential gradientE=V\vec E=-\nabla VElectrostaticsNon-conservative fields\nabla=gradient
Gauss’s LawElectric flux equals enclosed chargeEdA=Qε0\oint\vec E\cdot d\vec A=\frac{Q}{\varepsilon_0}Always true; useful for symmetryAsymmetric chargesQQ=charge
Boundary ConditionsField behavior at interfaceEE_{\perp}, DD_{\perp}, EE_{\parallel} continuityStatic fieldsTime-varying fields,\perp,\parallel=normal, tangential
Laplace’s EquationPotential in charge-free region2V=0\nabla^2 V=0No charge, electrostaticsCharge present2\nabla^2=Laplacian
Poisson’s EquationPotential with charge2V=ρ/ε0\nabla^2 V=-\rho/\varepsilon_0Charge presentCharge-free regionρ\rho=charge density

🔹 CONDUCTORS & DIELECTRICS

TopicDefinitionFormulaeConditionsLimitationsSymbols
Conductor (ES)Material allowing free charge motionE=0E=0 insideElectrostatic equilibriumCurrent flowEE=electric field
CapacitanceCharge per unit potentialC=QVC=\frac{Q}{V}Linear dielectricsEdge effectsCC=capacitance
Parallel Plate CapacitorTwo plates storing chargeC=εAdC=\frac{\varepsilon A}{d}Uniform fieldFringingA,dA,d=area, gap
Dielectric PolarizationDipole moment per volumeP=χeε0E\vec P=\chi_e\varepsilon_0\vec ELinear dielectricsStrong fieldsχe\chi_e=susceptibility
Bound Volume ChargeCharge due to polarizationρb=P\rho_b=-\nabla\cdot\vec PNon-uniform polarizationUniform PPρb\rho_b=bound charge
Bound Surface ChargeSurface polarization chargeσb=Pn^\sigma_b=\vec P\cdot\hat nSurface polarizationZero normal PPn^\hat n=normal
Electrostatic EnergyEnergy stored in fieldU=12CV2U=\frac{1}{2}CV^2Static fieldsTime-varying fieldsUU=energy

🔹 MAGNETOSTATICS

TopicDefinitionFormulaeConditionsLimitationsSymbols
Biot–Savart LawField due to current elementdB=μ04πIdl×r^r2d\vec B=\frac{\mu_0}{4\pi}\frac{I d\vec l\times\hat r}{r^2}Steady currentTime-varying currentμ0\mu_0=permeability
Ampere’s LawMagnetic circulationBdl=μ0I\oint\vec B\cdot d\vec l=\mu_0ISymmetry, steady currentTime-varying fieldsII=current
Lorentz ForceForce on moving chargeF=q(E+v×B)\vec F=q(\vec E+\vec v\times\vec B)Classical speedsRelativistic speedsv\vec v=velocity

🔹 ELECTROMAGNETIC INDUCTION

TopicDefinitionFormulaeConditionsLimitationsSymbols
Faraday’s LawEMF due to flux changeE=dΦBdt\mathcal{E}=-\frac{d\Phi_B}{dt}Changing fluxConstant fluxΦB\Phi_B=flux
Self InductanceEMF due to own currentE=LdIdt\mathcal{E}=-L\frac{dI}{dt}Fixed geometrySaturationLL=inductance
Mutual InductanceEMF due to nearby coilE=MdIdt\mathcal{E}=-M\frac{dI}{dt}Fixed positionVariable spacingMM=mutual inductance

🔹 AC & DC CIRCUITS

TopicDefinitionFormulaeConditionsLimitationsSymbols
Ohm’s LawRelation between V and IV=IRV=IRLinear conductorHigh temperatureRR=resistance
AC VoltageAlternating sourceV=V0sinωtV=V_0\sin\omega tSinusoidalNon-sinusoidalω\omega=angular freq
Inductive ReactanceOpposition by inductorXL=ωLX_L=\omega LAC onlyDCXLX_L=reactance
Capacitive ReactanceOpposition by capacitorXC=1ωCX_C=\frac{1}{\omega C}AC onlyDCXCX_C=reactance
Impedance (RLC)Total oppositionZ=R2+(XLXC)2Z=\sqrt{R^2+(X_L-X_C)^2}Linear ACHarmonicsZZ=impedance

🔹 MAXWELL & EM WAVES

TopicDefinitionFormulaeConditionsLimitationsSymbols
Displacement CurrentCurrent due to changing EId=ε0dΦEdtI_d=\varepsilon_0\frac{d\Phi_E}{dt}Time-varying EStatic fieldsΦE\Phi_E=E flux
Maxwell’s EquationsComplete EM lawsE=ρ/ε0\nabla\cdot\vec E=\rho/\varepsilon_0 etc.Classical fieldsQuantum scaleρ\rho=density
Plane EM WavePropagating EM disturbancec=1μ0ε0c=\frac{1}{\sqrt{\mu_0\varepsilon_0}}Far-fieldNear-fieldcc=speed
Poynting VectorEnergy flow densityS=1μ0E×B\vec S=\frac{1}{\mu_0}\vec E\times\vec BRadiation fieldsNear-fieldSS=power/area
EM Energy DensityEnergy per volumeu=12(ε0E2+B2μ0)u=\frac{1}{2}(\varepsilon_0E^2+\frac{B^2}{\mu_0})Linear mediaNonlinear mediauu=energy density

🔹 REFLECTION & REFRACTION (NORMAL INCIDENCE)

TopicFormulaeConditionsLimitations
Reflection CoefficientR=(n1n2n1+n2)2R=\left(\frac{n_1-n_2}{n_1+n_2}\right)^2Normal incidenceOblique incidence
Transmission CoefficientT=4n1n2(n1+n2)2T=\frac{4n_1n_2}{(n_1+n_2)^2}Lossless dielectricConducting media

 


TopicDefinitionFormulaeConditionsLimitationsSymbols
Biot–Savart LawField due to current element( d\vec B=\frac{\mu_0}{4\pi}\frac{I d\vec l\times\hat r}{r^2} )Steady currentTime-varying current(\mu_0)=permeability
Ampere’s LawMagnetic circulation( \oint\vec B\cdot d\vec l=\mu_0I )Symmetry, steady currentTime-varying fields(I)=current
Lorentz ForceForce on moving charge( \vec F=q(\vec E+\vec v\times\vec B) )Classical speedsRelativistic speeds(\vec v)=velocity


Post a Comment

0Comments

Post a Comment (0)

#buttons=(Ok, Go it!) #days=(20)

Our website uses cookies to enhance your experience. Check Now
Ok, Go it!